

Quality and Autogard are synonymous with overload protection. The company's reputation for high quality products is derived from over 40 years of design innovation and production. Autogard products are manufactured to meet ISO 9001 using the latest machine tools and high quality materials.

The Series 200 torque limiter is a state of the art mechanical device that will disengage at a pre-set torque value. The trip torque is set above the normal start-up and operating torque, but below a torque setting which would normally damage the driving and / or driven equipment. In the event of a jam, the torque limiter eliminates the threat of damage by disconnecting the inertia in the drive train.

In the normal drive condition, torque is transmitted through the drive balls (A) which are seated in detents in the drive plate (B) and the slide plate (C). These are all held together under pressure from spring (D).

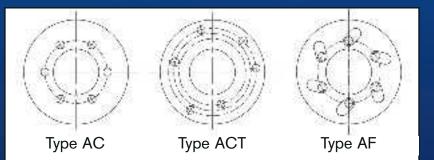
Disengagement on overload

When the driven machine either jams or an overload occurs which is greater than the torque setting, the balls roll out of their seats and force apart the drive plate (B) and the slide plate (C). The balls are retained by the cage plate (E) and roll freely on the flat surface of the drive plate (B) and slide plate (C).

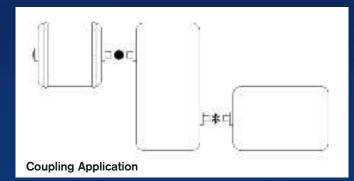
Re-engagement

Re-engagement occurs in one of three ways depending upon which reset type is selected.

Type AC - Automatic Random Reset


The ball detents in the drive plate (B) and the slide plate (C), as well as the retaining holes in cage plate (E) are equally spaced on the same pitch circle diameter so that the balls will roll into the next detents after tripping in either direction. Immediate shutdown is required to prevent wear of the detents.

Type ACT - Automatic Synchronous Reset


The ball detents are positioned in a scattered pattern so that the balls must return to their original position before they can reset. Re-engagement will occur within two revolutions in either direction. Immediate shutdown is required to prevent wear of the detents.

Type AF - Free Wheeling Disengagement

As with the AC the detents in drive plate (B) and slide plate (C) are equally spaced. The retaining holes in the engaging plate (E) are elongated so that as the balls roll from the detents they can follow a cam profile onto a different running track away from the detents. The AF can run at higher speeds as the balls will not ratchet in the detents. Re-setting is achieved by manually locking the plates and reversing the drive.

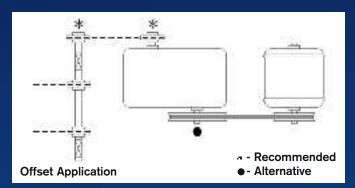
The Autogard torque limiter acts like a mechanical "circuit breaker" to protect the weakest member of the drive train. The most effective location for the torque limiter would be as close as possible to the component being protected. Drive trains having large reduction ratios should be given special consideration if the torque limiter is to be mounted at the high speed end. Consult Autogard for final drive with 300:1 reduction or higher. When locating the torque limiter on the high speed side of the drive, allow for starting torque. The Autogard torque limiter is suitable for chain, belt and gear drives and is also available with flexible couplings.

Features and Benefits

- Proven design with thousands of units successfully in operation.
- Cost effective designs.
- Accurate torque limitation prevents costly downtime.
- Standard designs can accommodate large torque ranges.
- Instantaneous disengagement protects equipment from damaging inertias.
- Bi-directional protection.
- Easy to adjust to desired allowable torque.
- Three types available
 - Type AC Automatic Rapid Reset
 - Type ACT Automatic Synchronous Reset
 - Type AF Freewheeling, Manual Reset for high speed.

Series 200 is offered in a large number of styles ensuring the right solution is available for all applications e.g.

- Timing, HTD & V-Belt drives
- Chain and sprocket drives
- Gear drives
- Flexible or Rigid couplings
- Flywheel or large gear mounting
- Special or unusual drive conditions


Ordering the Series 200 Torque Limiter

When ordering please provide the following designation

Model / Type / Size / Torque Limiter Bore (S1) / Coupling Bore (S2)

Type: AC - Automatic Rapid Reset (Standard) ACT - Automatic Synchronous Reset (Optional) AF - Freewheeling, Manual Reset (Optional)

S1 Bore & S2 Bore - Please specify metric or imperial dimensions. Standard bore tolerance is H8 with normal fit key Js9

Selection

Data required for torque limiter selection.

- · Kilowatt or Horsepower and rpm of the driver
- · Shaft details for the driving and driven equipment
- (1) Calculate the nominal torque:

Torque (Nm) = Kilowatt (kW) x 9550 / rpm or

Torque (lbf-ins) = Horsepower (HP) x 63025 / rpm

Consideration should then be given to start torque or other special circumstances depending on the position chosen in the drive train. Choose a set torque with a <u>suitable margin over nominal</u>.

- (2) Check limiting conditions:
 - (a) Check hub bore capacity
 - (b) Check the torque limiter dimensions such as the overall length and outside diameter.
- (3) Select and specify the appropriate drive medium or coupling

All Autogard Series 200 units can be supplied from the factory at a pre-set torque and with required drive medium assembled to the unit.

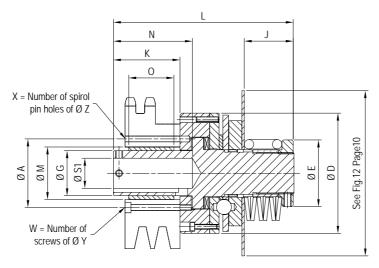
Example: 205 / ACT / 3 / S1 35 mm / S2 40 mm

Refers to a model 205 size 3 Torque Limiter designed for Synchronous Reset

Bore S1 = 35 mm Bore S2 = 40 mm

Also specify :

- Torque setting or range required


- Pulley or sprocket details where required.
- Enclosure where required.

The specifications contained within this brochure are correct at the time of going to print. Autogard is continually reviewing and updating the specifications on all its product ranges and therefore reserves the right to change any details.

MODEL 221

For use with sprockets, pulleys or gears. Supplied complete with bearing and suitable mounting holes.

Technical Details

Size		1	2	3	4	5	5S
Torque (Nm) ①	AC/AF	1 - 44	6 - 226	6 - 678	90 - 1130	141 - 2540	938 - 7627
	ACT	3- 69	9 - 384	9 - 854	113 - 1774	158 - 2937	1130 - 8474
Speed (rpm) ②	AC	200	200	200	200	200	200
	ACT	500	500	500	500	500	500
	AF	2000	2000	2000	2000	2000	-
Weight (kg)	3	1.5	4.5	9.9	21.6	50	106
Mass Moment of Inerti	a (Kg m²) ③	0.0005	0.0049	0.015	0.06	0.21	0.73

See page 9 for spring selection and torque ranges with specific springs. 1)

2)

Higher speeds may be allowed under certain conditions. Please consult Autogard Weights and moments of inertias apply to maximum (S1) bores and exclude sprockets, etc. 3)

Dimensional Details - mm

Size		1	2	3	4	5	5S
Max Bore S1	4	12.7	25.4	38.1	50.8	76.2	102
D		60	102	127	159	216	267
E		33	57	80	108	153	178
G (8)	Min	22.225	38.100	50.800	71.476	101.727	152.400
G (8)	Max	22.253	38.136	50.838	71.501	101.752	152.464
J		42	42	76	96	121	121
К		50	56.2	78	117	148	166
L		140	153	216	287	368	426
M ®	Min	25.400	44.450	57.175	77.788	114.300	171.450
171 @	Max	25.430	44.475	57.201	77.818	114.336	171.491
N	5	51	67	89	127	165	178

Rectangular keys must be used for maximum bore diameters 4)

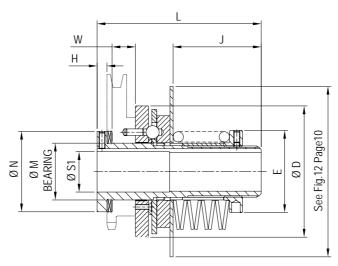
Dimension N is the depth of the blind bore S1 unless specified otherwise. 5)

For through shaft applications or for weight reduction a through bore can be furnished - consult Autogard. 6)

Size 5S is available in AC and ACT types only

	Si	mallest Spro	ocket (Numl	per of Teeth)	Smallest	Drive Medium Fixing Details				
Size	3/8″ Pitch	1/2" Pitch	5/8″ Pitch	3/4″ Pitch	1″ Pitch	Pulley ⑦ Dia. (mm)	X – Z Dowels	W – Y Screws	A pcd (mm)	O (mm)	
1	19	15	12	-	-	44	3 – 4	3 – M4	36	38	
2	26	21	17	15	12	67	3 – 5	3 – M5	58	38	
3	31	24	20	17	13	80	3 – 6	3 – M6	70	63	
4	-	31	25	21	17	109	6 - 8	3 – M8	95	75	
5	-	41	33	28	22	149	6 – 10	3 – M10	135	100	
5S	-	60	48	41	31	230	3 - 12	3 – M12	205	135	

The pulley diameter quoted is to the bottom of the V-pulley groove or the inside diameter for the flange of the timing pulley 7)


8) The drive medium may be mounted onto the adapter with screws and dowels and must be bored to dimension "M"

The supplied bearing may then be press fitted into the drive medium. Finally, the bearing should then be bored to dimension "G" as shown.

MODEL 202

Supplied fitted with a sprocket, pulley or gear, as an integral part of the unit to give the shortest overall length.

Technical Details

Size		1	2	3	4	5	5S
Torque (Nm) ①	AC/AF	1 - 44	6 - 226	6 - 678	90 - 1130	141 - 2540	938 - 7627
	ACT	3- 69	9 - 384	9 - 854	113 - 1774	158 - 2937	1130 - 8474
Speed (rpm) ②	AC	200	200	200	200	200	200
	ACT	500	500	500	500	500	500
	AF	2000	2000	2000	2000	2000	-
Weight (kg)	3	1.0	2.9	6.4	15.4	33.4	67
Mass Moment of Inertia (K	(g m²) ③	0.0003	0.003	0.009	0.046	0.14	0.47

See page 9 for spring selection and torque ranges with specific springs. 1)

2) 3)

Higher speeds may be allowed under certain conditions. Please consult Autogard Weights and moments of inertias apply to maximum (S1) bores and exclude sprockets, etc.

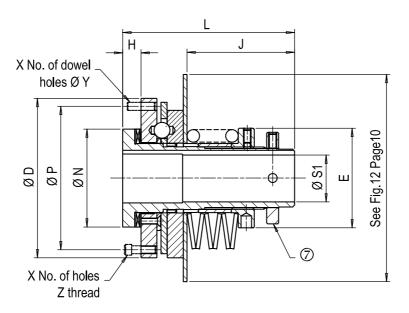
Dimensional Details – mm

Size		1	2	3	4	5	55
Max Bore S1	4	12.7	25.4	38.1	50.8	76.2	102
D		60	102	127	159	216	267
E		33	57	80	108	153	178
Н		7.9	9.6	9.6	9.6	12.7	19.1
J		42	42	73	94	121	121
L	5	102	111	149	197	267	279/337
М		22	40	55	76	110	140
N		37	60	78	95	145	180
W	56	19	25.4	25.4	44.4	63.5	44.4/101.6

Rectangular keys must be used for maximum bore diameters 4)

5) Size 5S is supplied in two lengths.

Special hubs can be supplied with dimension W increased to accomodate larger size drive media. Size 5S is available in AC and ACT types only. 6)


		Smallest Sp	procket (Num	ber of Teeth)	_	Smallest
Size	3/8″ Pitch	1/2″ Pitch	5/8″ Pitch 3/4″ Pitch		1″ Pitch	Pulley ⑦ Dia. (mm)
1	16	13	11	-	-	42
2	24	19	16	14	11	67
3	30	23	19	17	13	86
4	-	27	22	19	15	115
5	-	40	32	28	22	169
55	-	49	39	34	26	261

7) The pulley diameter quoted is to the bottom of the V-pulley groove or the inside diameter for the flange of the timing pulley

MODEL 203

For mounting to the face of a flywheel or large gear by means of a suitable adaptor. The flywheel or gear must be mounted on its own bearings.

Technical Details

Size			1	2	3	4	5	55
Torque (Nm)	1	AC/AF	1 - 44	6 - 226	6 - 678	90 - 1130	141 - 2540	938 - 7627
		ACT	3- 69	9 - 384	9 - 854	113 - 1774	158 - 2937	1130 - 8474
Speed (rpm)	2	AC	200	200	200	200	200	200
		ACT	500	500	500	500	500	500
		AF	2000	2000	2000	2000	2000	2000
Weight (kg)		3	1	2.4	5.4	12.7	27.9	55
Mass Moment of Ine	ertia (Kg m	²) ③	0.0003	0.003	0.009	0.045	0.13	0.46

See page 9 for spring selection and torque ranges with specific springs. 1)

Higher speeds may be allowed under certain conditions. Please consult Autogard Weights and moments of inertias apply to maximum (S1) bores 2)

3)

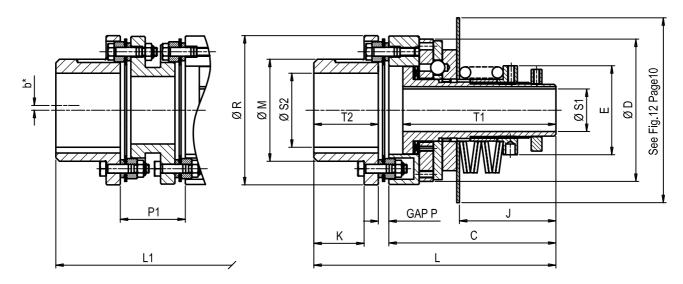
Dimensional Details - mm

Size		1	2	3	4	5	5S
Max Bore S1	4	12.7	25.4	38.1	50.8	76.2	102
D		60	102	127	159	216	267
E		33	57	80	108	153	178
Н		11.5	14.4	14.4	13.2	27.9	37.1
J		50	52	86	106	135	120
L		91	95	137	165	216	234.9
Ν		37	60	78	95	145	180
Р		47.625	90.475	114.300	144.450	196.850	(See Note 6)
Х		3	3	6	6	6	6
Y (Dowel Hole)	(ins)	3/16	3/16	1/4	5/16	3/8	5/8
Z	(ins)	8-32 UNC	8-32 UNC	1/4 UNF	5/16 UNF	3/8 UNF	1/2 UNF

Rectangular keys must be used for maximum bore diameters 4)

Size 5S is available in AC and ACT types only For AC type P = 235 mm for 1/2" UNF threaded holes and P = 209.55 mm for the 5/8" dowel holes 6)

For ACT type P = 251.46 mm


7) Collars containing set screws to secure the S1 hub to the shaft can be supplied on request

⁵⁾

MODEL 205

The model 205 includes the Autoflex EB - HVII torsionally rigid metal membrane coupling for angular misalignment. The Autoflex ES - HVII can also be supplied which accommodates angular and parallel offset misalignment

Technical Details

9	Size		205-1 / 8HVII	205-2 / 35HVII	205-3 / 70HVII	205-4 / 150HVII	205-5 / 480HVII
Torque (Nm)	1	AC/AF	1 - 44	6 - 226	6 - 678	91 - 1130	141 - 2540
		ACT	3 - 69	9 - 384	9 - 854	113 - 1774	158 - 2937
Speed (rpm)	2	AC	200	200	200	200	200
		ACT	500	500	500	500	500
		AF	2000	2000	2000	2000	2000
Weight (kg)		3	2.0	5.5	10.5	23	51
Mass Moment of Ir	nertia (Kg n	n²)	0.00108	0.00607	0.01562	0.07650	0.27330
	Axial (mm)	0.3	0.5	0.6	0.8	1.0
Max Coupling Misalignments	Angular	(°)	0.5	0.5	0.5	0.5	0.5
Misalgrinents	Parallel k	o* (mm) ④	0.6	0.7	0.7	0.8	1.3

1) See page 9 for spring selection and torque ranges with specific springs.

2) Higher speeds may be allowed under certain conditions. Please consult Autogard

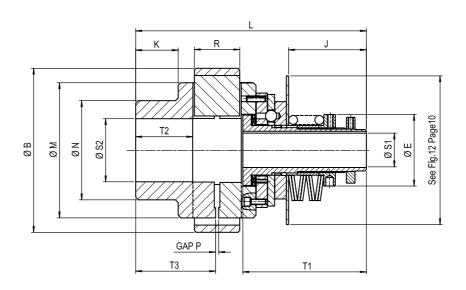
3) Weights and moments of inertias apply to maximum (S1 and S2) bores

4) Parallel offset misalignment applies only to ES-HVII spacer couplings and is based on minimum DBSE

Dimensional Details – mm

Size		205-1 / 8HVII	205-2 / 35HVII	205-3 / 70HVII	205-4 / 150HVII	205-5 / 480HVII
Max Bore S1	5	12.7	25.4	38.1	50.8	76.2
Max Bore S2		30	50	66	90	110
С		99	108	149	179	231
D		60	102	127	159	216
E		33	57	80	108	153
J		50	52	86	106	135
К		23	33	45	60	75
L		139	164	216	263	341
L1		180	212	265	318	435
М		43.7	70.6	91	123	150
Р		7.4	9.4	9.4	8.8	15
P1	6	48	58	58	64	109
R		80	110	133	170	230
T1		90.4	95.3	136.6	165.1	215.9
T2		32.5	46	57.5	74.6	95

5) Rectangular keys must be used for maximum bore diameters


6) P1 dimension is a minimum value. Longer spacers available on request - consult Autogard.

7) Collars containing set screws to secure the S1 hub to the shaft can be supplied on request

MODEL 206S

The model 206S includes the latest Autogard Samiflex torsionally soft flexible coupling for parallel and angular misalignment.

Technical Details

Size			1 / A1	2 / A3B	3 / A4	4 / A45	5 / A6	5S / A8
Torque (Nm)	(1)	AC/AF	1 - 44	6 - 226	6 - 678	90 - 1130	141 - 2540	938 - 7627
longue (min)	0	ACT	3 - 69	9 - 384	9 - 854	113 - 1774	158 - 2937	1130 - 8474
Speed (rpm)	2	AC	200	200	200	200	200	200
		ACT	500	500	500	500	500	500
		AF	2000	2000	2000	2000	2000	-
Weight (kg)		3	1.9	6.3	12.8	24.7	55.9	139
Mass Moment of Ine	rtia (Kg m²)	4	0.0011	0.0180	0.0520	0.13	0.50	2.40
	Axial (r	nm)	0.5	0.7	0.8	1.0	1.0	1.5
Max Coupling Misalignments	Parallel	(mm)	0.3	0.5	0.7	0.7	0.8	1.0
	Angula	r (°)	2.0	2.0	1.3	1.3	1.3	1.0

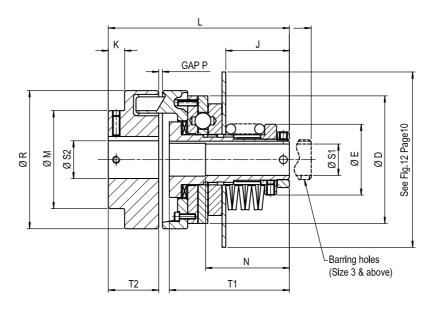
1) See page 9 for spring selection and torque ranges with specific springs.

2) Higher speeds may be allowed under certain conditions. Please consult Autogard

3)

Weights apply to maximum (S1 and S2) bores Moments of inertia apply to maximum bores (S1 and S2) 4)

Dimensional Details – mm


Size		1 / A1	2 / A3B	3 / A4	4 / A45	5 / A6	5S / A8
Max Bore S1	5	12.7	25.4	38.1	50.8	78	102
Max Bore S2		41.3	69.8	70	82.5	114.3	150
В		83	144	182	202	265	363
E		33	57	80	108	153	178
J		50	52	86	106	135	120
К		-	45	47	52	70	114
L		154.2	200.0	254.4	297.4	390.0	465.4
М		65	116.2	150	170	233	326
Ν		-	105	110	125	180	242
Р		1.5	2.5	3.5	3.5	3.5	5
R		22	42	51	56	67	85
T1		90.4	95.3	136.6	165.1	215.9	234.95
T2		34	56	63	70	95	147
T3		44.8	76.3	88	97	127.8	188.5

Rectangular keys must be used for maximum bore diameters. 5) Size 5S is available in AC and ACT types only.

MODEL 206N

The model 206N includes the traditional torsionally soft flexible coupling for parallel and angular misalignment.

Technical Details

Size			1 / 80	2 / 110	3 / 140	4 / 160	5 / 250	5S / 350	
Torque (Nm)	1	AC/AF	1 - 44	6 - 226	6 - 678	9 - 1130	141 - 2540	938 - 7627	
• • •		ACT	3 - 69	9 - 384	9 - 854	113 - 1774	158 - 2937	1130 - 8474	
Speed (rpm)	2	AC	200	200	200	200	200	200	
		ACT	500	500	500	500	500	500	
		AF	2000	2000	2000	2000	2000	-	
Weight (kg)		3	1.7	6.8	11.5	22	56	120	
Mass Moment of Inertia (Kg m2) ④			0.0007	0.0050	0.0170	0.07	0.27	1.50	
	Axial (ı	mm)	4.0	4.0	4.0	6.0	8.0	8.0	
Max Coupling Misalignments	Parallel (mm)		0.13	0.18	0.23	0.28	0.43	0.43	
g	Angula	ır (°)	0.09	0.09	0.1	0.1	0.1	0.1	

1)

See page 9 for spring selection and torque ranges with specific springs. Higher speeds may be allowed under certain conditions. Please consult Autogard 2)

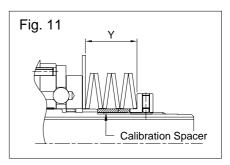
Weights apply to maximum (S1 and S2) bores 3)

4) Moments of inertia apply to maximum bores (S1, S2)

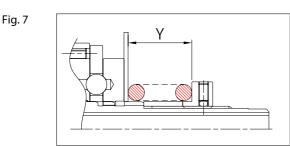
Dimensional Details - mm

Size	1 / 80	2 / 110	3 / 140	4 / 160	5 / 250	5S / 350
Max Bore S1 5	12.7	25.4	38.1	50.8	78	102
Max Bore S2	30	48	60	65	100	140
D	60	102	127	159	216	267
E	33	57	80	108	153	178
J	50	52	86	106	135	120
К	9.53	6	21	21	40	66
L	118.9	143.8	208	243.8	335.8	422.3
M	50	86	100	108	165	230
N	50.8	66.55	88.9	127	165.1	190.5
Р	3	3	3	4	5.5	5.5
R	80	110	140	160	250	350
T1	90.4	95.3	136.6	165.1	215.9	234.9
T2	30	40	55	60	100	140

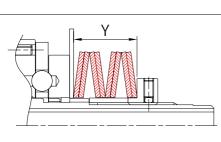
Rectangular keys must be used for maximum bore diameters 5)


Size 5S is available in AC and ACT types only

AUTOGARD SERIES 200


TORQUE ADJUSTMENT

The Autogard torque limiter can be despatched from the factory with the torque setting specified at the time of order. Alternatively the unit can be furnished unset allowing for adjustment at the time of installation. Calibration spacers (see Fig. 11) are supplied either to prevent this nominal setting being exceeded or to prevent adjustment over the maximum capacity of the unit. Calibration spacers which are fitted to prevent adjustmen above the nominal setting must be removed to allow the tightening of the adjustment nut to achieve a higher torque, not greater than the maximum for the unit. The spacers also help position disc springs correctly where they are used.



In many cases the exact torque requirements are difficult to calculate with any reasonable

degree of accuracy. Therefore the recommended installation procedure would be to try to start the drive with a low torque setting, progressively tightening the adjustment nut until the torque limiter will start the mechanism without disengaging. Before attempting to turn the adjusting nut, ensure that the locking screw is loosened and is relocked after final adjustment.

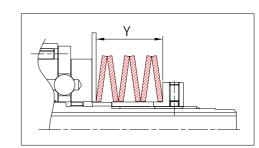
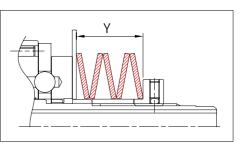



Fig. 9

	Туре	Spring Code	Colour	Qty	Stack as	AC /AF Torque Range		ACT Torque Range		Min. Allowable
Size						(Nm)	Min. for unit without clamp collar (Nm)	(Nm)	Min. for unit without clamp collar (Nm)	Spring Length Y (mm)
	Disc	1D1S	Natural	6	Fig. 9	8 – 44		13 – 68		
1	Coil	1C1	White / Red	1	Fig. 7	9 – 28	4.5	10 – 37	3.4	24.1
	Coil	1C2	White / Green	1	Fig. 7	5 – 14	3.1	7 – 21	1.8	24.1
	Coil	1C3	White / Yellow	1	Fig. 7	1 – 6	0.6	3 – 11	0.9	17.8
	Disc	2D1S	Blue	6	Fig. 9	130 – 226	64.4	209 – 384	94.9	25.4
	Disc	2D2S	Blue	5	Fig. 10	72 – 203		102 – 328		
2	Coil	2C1	Blue / Red	1	Fig. 7	54 – 88	14.1	102 – 133	23.2	25.4
	Coil	2C2	Blue / Green	1	Fig. 7	21 – 61	7.2	40 – 90	13.6	21.6
	Coil	2C3	Blue / Yellow	1	Fig. 7	6 – 19	4.1	10 – 25	5.1	19.1
	Disc	3D1D	Brown	8	Fig. 8	136 – 678		157 – 854		30.5
	Disc	3D1S	Brown	6	Fig. 9	72 – 407		95 – 542		25.4
3	Coil	3C1	Brown / Red	1	Fig. 7	37 – 282	27.6	57 – 406	43.5	38.1
	Coil	3C2	Brown / Green	1	Fig. 7	15 – 135	13.2	23 – 132	18.3	33.0
	Coil	3C3	Brown / Yellow	1	Fig. 7	6 – 56		9 – 80		27.9
	Disc	4D1S	Orange / Black	5	Fig. 10	222 – 1130		269 – 1774		35.6
4	Disc	4D2S	Orange	6	Fig. 9	145 – 847		171 – 1073		35.6
	Coil	4C1	Orange / Red	1	Fig. 7	90 – 316	36.7	113 – 395	47.5	49.5
5	Disc	5D1S	Grey / Black	6	Fig. 9	497 – 2540		543 – 2937		61.0
	Disc	5D2S	Grey	6	Fig. 9	226 – 2260		272 – 2655		50.8
	Coil	5C1	Grey / Red	1	Fig. 7	142 – 350		159 – 531		48.3
5S	Disc	5SD1	Natural	5	Fig. 10	938 – 5650		1130 – 6440		50.8
22	Disc	Hi-Torq	Natural	5	Fig. 10	1413 - 7627		1582 - 8474		

CAUTION

DO NOT TIGHTEN THE ADJUSTING NUT SO THAT THE SPRINGS ARE COMPRESSED BEYOND THEIR MINIMUM OPERATING LENGTH, DIMENSION "Y" (with the torque limiter engaged) or the springs will not allow sufficient movement of theslide plate to let the balls leave their seat during an overload. Damage to the machinery or to the Autogard torque limiter will result.

It is important that our product is used in the correct manner and that adjustment and setting in relation to a particular function follow recommended procedures

DRIVE SHUTDOWN ON DISENGAGEMENT

AUTOGARD SERIES 200

Switching off the drive upon disengagement will prevent unnecessary wear which could shorten the working life of the Autogard torque limiter. The operation of the limit switch is effected by the movement of the slide plate on disengagement. A flat switch plate is attached to the slide plate as shown in Fig. 12.

The following table gives the full details of the plate diameters and movement on disengagement.

Size	1	2	3	4	5	5S
X (mm)	2.4	4.4	4.4	5.3	6.3	8.1
E (mm)	83	140	165	203	305	305

X - Movement on disengagement

14\11ftmaan

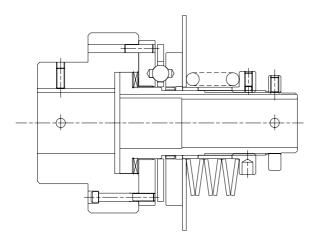
Protective Finish

The standard phosphate and oil finish provides a high level of corrosive resistance. Units can be supplied with a suitable alternative finish for special machinery requirements, or for adverse environmental conditions. Please consult Autogard to discuss special requirements.

Maintenance

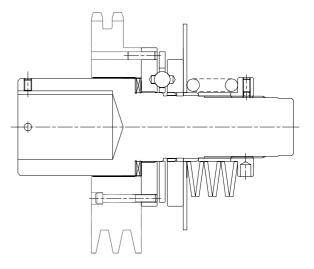
The Autogard torque limiter uses journal and needle thrust bearings. The latter are packed with grease on assembly as are the driving balls. Under reasonably clean conditions the unit will operate with a minimum of maintenance and relubrication. The frequency of maintenance is dependant on many operating factors, but in adverse conditions please consult Autogard.

AUTOGARD SERIES 200 - ADDITIONAL MODELS


With over 40 years in the torque limiter business, Autogard has designed and supplied a broad range of special units to suit almost any torque limiter application.

Please contact Autogard for more details related to your specific requirements.

MODEL 204


Designed for use with self aligning equipment.

CAUTION: The rigid coupling does not allow angular or parallel misalignment.

MODEL 209

Designed for applications requiring relatively large "blind" bores and light torque settings. The unit can be supplied with a bearing- supported sprocket, pulley, gear, etc.

GENERAL SAFETY

The Autogard Torque Limiter is a reliable unit, built to high standards of workmanship. Similar to all mechanical devices, each application must be considered on its own merits with reference to safety (I.e. lifting equipment, explosive conditions, etc.). As a rotating component, adequate guarding must be provided, in accordance with local codes. Autogard staff are always available to discuss particular applications.

OTHER AUTOGARD PRODUCTS

Autoflex Couplings

Samiflex Elastic Coupling

Autogard Series 320 Torque Limiters

Autogard Series 400 Torque Limiters

Head Office British Autogard Limited Cirencester Glos GL7 1YT United Kingdom

Tel +44 (0) 1285 640333 Fax +44 (0) 1285 659476 Email sales@autogard.co.uk Web www.autogard.com

American Autogard Corp. Rockford, Illinois Tel +1815 633 1441 Fax +1815 633 8488

Autogard Asia Pacific P/L Melbourne, Australia Tel + 613 9532 0901 Fax + 613 9532 1032

Autogard Kupplungen Barntrup, Germany Tel +49 5263 9549 60 Fax +49 5263 9549 69

Autogard Italy Milano, Italy Tel +39 02 92 1700 471 Fax +39 02 92 1700 472

Autogard South Africa (Pty) Ltd Johannesburg, South Africa Tel + 27 11 728 4868 Fax + 27 11 728 5254

Autogard Series 600 Torque Limiters

Autogard Series 800 Torque Limiters

Autogard Power Monitors

Monitorq - Torque Sensors

Autogard's modern plant at Cirencester, England Devoted to the manufacture and distribution of quality power transmission products